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Among problems involving wave motion from moving sources more attention is being paid 
to the radiation of internal waves when the moving sources are accelerated [i, 2]. In the 
present paper we consider the total energy of radiation and its spectral distribution from 
mass sources undergoing periodic motion. The methods and basic notation are as in [3, 4].* 

I. Wave Radiation for ~tion of the Source along a Helix. In a uniformly stratified 
ideal incompressible fluid, the general expression for the energy loss of a mass source per 
unit time is given by [3, 4] 

W =- ~ d3rp (r, t) m (r, t), 

If we make use of the proportionality (in the linear description) between the pressure per- 
turbation p and the mass source m inducing it, we can rewrite w as a quadratic form in the 
Fourier transform m(k, m) of the mass source: 

= ~ ('J d3kdcodz~ (N 2 -  r 2) G re' (k, ~) e-~(~+~ (k, co) re ( - -  k, ~). W (1. 1) 

Where Gret(k, ,.~) is the Fourier transform of the scalar retarded Green's function for the 
internal wave equation. We consider the case where the Brunt--V~is~l~ frequency N is con- 
stant. T1,en in the Boussinesque approximation we have 

G "| (k, co) = [(co q- ie) 2 k 2 -- N2k~] -I, (i. 2) 

where co is the frequency and e is an infinitesimal positive constant put in as usual to avoid 
the singularities on the real axis in correspondence with the principle of causality, k is 
the way,vector and k h is its horizontal component. 

For a point source of constant intensity mo uniformly incident along a helix 

rn(r, t) ---- rno~(r -- R(t)), ( 1 . 3 )  
R(t) = (R o sin coot, R o cos coot, rot), 

With  t h e  h e l p  o f  t h e  w e l l - k n o w n  e x p a n s i o n  

e - ~  = ~ ]~ (~) e - ~ ,  ( 1 . 4 )  

w h e r e  t h e  J n ( ~ )  a r e  t h e  B e s s e l  f u n c t i o n s ,  we can  ~.rri te m ( r ,  t )  i n  F o u r i e r  s e r i e s  fo rm 
+o= 

re(k,  ~) = 2~rn0 ~ 3"n(khRo)e-in~6(co-- ncoo-- kzvo). (1.5) 
n~.--OO 

where ~ is the angular coordinate of vector k h in the horizontal plane. 

Substituting series (1.5) into (I.i) and integrating with respect to ~ and the frequency 
o we get 

W = ~ - ~  
n = - - o o  0 

and so the expression for the energy loss in the present case is independent of time. 

(1.6) 

*Another method of calculating the energy loss of moving sources based on the asymptotic 
values of the wave amplitudes is discussed in the monograph "Waves in Fluids" by J. 
Lighthill, Mir, Moscow (1981). 
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From tlte fact that W is real it follows that only the imaginary part of the Fourier- 
transformed retarded Green's function survives. From (1.2) we have 

]m G TM (k,  (,)) --: - - =  sg ,  (,)8 ( t o " k "  - -  N-kh) .  ( i .  7)  

Hence the energy loss of a point source moving along a helix can be rewritten in the 
form 

++ -1 o o  , c ~  

PPI~ d'"dkz f dZ,',k,YP, (k,,,%) I I ( m  a ( , , :k + mkP,)  a (,+ - -  k,,'o - -  n+o). ( 1 , 8 )  W - - .  . ',a '~~x''+ . - -  - -  
21 +- ~ (1 

Because of the two delta-functions the number of integrations can he reduced to one; further 
simplification depends on whether the vertical component of the velocity of motion vo is 
equal to zero or not. 

We consider the more interesting case where the source moves uniformly around a horizon- 
tal circle of radius Ro so that Vo =0.* Integrating (i.8) with respect to k z and m we obtain 

+ I N/'%'I ": 

I " 
"'; VN"-- ' ''+ d/,'hJ;, (/,,,ft.). (l.9) . _ : . . .  l t - l t ) b  0 

+~ I t )  

We note that out of tile entire harmonic series there remains a finite number of terms 
and an upper bound on the number oF terms is given by the ratio of the angular velocity of 
the source around the circle to the Brunt--V~isHl~ frequency N (n~N/~o). If tile angular 
velocity of rew)lution is larger than N, then in general there will be no radiation (this is 
typical of harmonic excitation of internal waves; see Secs. 2 and 3 in 161). Since the ratio 
mo/N can he thought of as a rotational Froude number V/NRo, the radiation condition m0 <N is 
the as.~ertion that the rotational Froucle number be less than unity. 

We turn now to the integral with respect to the wavenumber k h. ~lis integral will be 
logarithmically divergent at large kh because of the large contribntion of very short wave- 
lengths in the radiation of a point source. For more realistic sources of finite spatial 
extent, the contribution of wavenumbers exceeding l/to, where ro is a characteristic spatial 
dimension of the source, will vanish. It can be shown that for an arbitrary nonlocal source 
of the form re(r, t) =mof(r --R(t)) in tile general expression (1.6) for the energy loss aver- 
aged over a period 2~r/mo, tile extra factor If(k) l 2 appears. This factor falls off with large 
wavenumbers rapidly enough to ensure that the entire integrand is such that the integral con- 
verges. 

~te weak logarithmic nature of the divergence of the integral (1.9) means that the final 
results will be only weakly dependent on the details of the source. Therefore one can esti- 
mate the inte~ral by cutting it off for wavenumbers exceeding the upper limit k h ~I/ro. ~len 
the asymptotic value of the integral for Ro/ro>>l leads to the result 

.. [N. , ' , , , , I  

t,, +,, .,",. FN' ,,.",,:,,. ( 1 . 1 0 )  

We compare this with another limiting case where the point mass source moves uniformly 
in the vertical direction. Putting Ro =0, mo =0 in (1.6) and integrating with respect to 
the wavenumber we find (see also 17 I) 

iN 2 2 

m,. dm I o~ I := m..N W = ~ . 8~ , ,  ~ �9 ( 1 . 1 1 )  

From (i.Ii) and (i.i0) it is clear that when mo~N, Vo ~V =~oRo the energy loss for motion 
of the source around a circle has the same order of magnitude as the energy loss in radiation 
of internal waves for uniform rectilinear motion. 

If the wave source is a point dipole (doublet) with the dipole moment vector directed 
along the velocity vector (d =poV), then 

*In electrodynamics, the radiation of electromagnetic waves by a charge for this geometry is 
known as synchrotron radiation 151. 
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�9 ~ 6 (r - R (t)) m (r ,  t) = d V 6  ( r - -  R (t))  = - -  ~ 0 V V ~  ( r - - R  (t))  --= P0 , - ~  

and obviously an extra factor of --im appears in the expression for m(k, ~) in (1.5) and in 
tile integrand of (1.6) we have the corresponding additional factor of m2. 

For a doublet moving uniformly around a horizontal circle we find from (1.6) in the 
same way as above 

u~ Jto ~ ~ 2 jr, ~ ' 
~'~'~0 r0 ~--~1 

For comparison it follows from (1.6) that for uniform vertical motion of the doublet we have 
(see also [7]) 

~ ~___ ~t~N4/(10.~vo). (I. 12) 

From the well-kno~,m modeling of a sphere of radius ro by a doublet with ~o =2~r~ in a 
uniform fluid, the last result can be used to estimate the radiation of internal waves by a 
sphere in a weakly stratified fluid (for Nro<<V, Nro<<vo) '~ 

2. Radiation for Constant Intensity Vibration of the Hass Source. We consider the 
energy loss of a mass source undergoing periodic motion of a different form. Let us consider 
a uniform motion of the source in one direction superimposed on vibrational motion of fre- 
quency mo in another direction a. Then using (1.4) for a point source we have (see (1.3) 
and ( 1 , 5 ) )  : 

�9 m (r, t) := m06(r -- R(t)), R(t) -- v0t -~- a sin mot , 
+zo 

m (k, m) = 2~m0 ~ d',, (ka) 6 (co - -  nmo - -  kvo). 

We s u b s t i t u t e  t h e  l a t t e r  e x p a n s i o n  i n  t h e  g e n e r a l  f o r m u l a  f o r  t h e  e n e r g y  l o s s  ( 1 . 1 )  and a v e r -  
age  o v e r  a v i b r a t i o n a l  p e r i o d  2~r/wo, i n t e g r a t e  w i t h  r e s p e c t  to  f r e q u e n c y  z ,  and s u b s t i t u t e  
( 1 . 7 ) .  We t h e n  o b t a i n  

<W> = 8.~2~_,~. ~ ~ ~ d3kdmlml(N-~-- m ' ) "  J'~ (ka) ~(m2k2-- N2k~')~(m-- kv~  nm~ (2.1) 

w h i c h  i s  a n a l o g o u s  to  ( 1 . 8 ) .  

In  t h e  s p e c i a l  c a s e  o f  v e r t i c a l  v i b r a t i o n s  (a  = (0,  0,  a ) ,  vo =0) we i n t e g r a t e  w i t h  
respect to the horizontal component of the wavevector and this formula simplifies to 

+co N 

Replacing the upper l i m i t  of  i n t e g r a t i o n  by [kz] ",,1/ro to e l im inate  the divergence as done 
in Sec .  i a b o v e ,  we perform the integral with respect to m and find 

2- / |N/%] 
m~ '~  no) ( 2 . 2 )  <W> ~ ~ ~.~ 0. 

n=l  

From comparison of this result with (i.i0) we see the analogy for the types of periodic 
motion of point sources considered here. This analogy also exists for other types of 
s o u r c e s ,  

3. Radiation for ~tion of the Source about an Elliptical Trajectory. By analogous 
methods we can treat the nonuniform motion of the source about an elliptical trajectory with 
constant angular velocity mo. For a point source moving in the horizontal plane along the 
curve x2/a = +y2/b2 =I, we have 

m(r,  t) = mo6(r - -  R(t) ) ,  R(t)  = (a s in  mo t, b cos  wot, 0 ) ,  

and w i t h  the  h e l p  o f  ( 1 . 4 )  we f i n d  
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re (k ,  ~) = 2~mo ~.a~ J , ( u ) c - i ' : * 8 (  ( ' ) -  n~ 
" . . . . . . .  ( 3 . 1 )  

= lxl, u = (k~a, kub, 0), cos q> : :  a/,'.~lu. 

After substitution of this expansion in the quadratic form (I.i) and carrying out simi- 
lar steps to those above (averaging over the period of motion 2~/mo, replacement of the 
Green's function by its imaginary part (1.7), and integrating over frequency and the verti- 
cal component of the wavevector) we obtain the final result 

"~o INI'%I '~ " (x) 
- -  "' " ' J"  ,,, (3.2) 

<W>--:  4a z Z ]/ N " - -  n-m,, a d.k,< kh . 
n l  

As expected, in the special case of circular motion (a =b) this result reduces to (1.9) 
except that in (3.2) the energy loss has been averaged over the period of motion. 

In the other limiting case b =0 (or a =0) formula (3.2) describes radiation for a 
source vibrating along a horizontal axis. It can be seen that the spectrum of the radiation 
is pracLically independent of the details of the motion. The entire difference is in the 
value of the cut-off integral with respect to the wavenumber which is asymptotically indepen- 

2 2 cosS ~ for ~>> i) when the dimension of the source ro  is small dent of the number n (Jn(~) ~ 

in comparison with the scale of motion. 

4. Appendix. Another ~thod of Calculating the Radiation. Above we calculated the 
energy loss of moving sources per unit time. From conservation of energy, for a uniformly 
moving source in an ideal fluid, the energy loss is equal to the radiation energy of inter- 
nal waves 13, 41, which is defined as the flux of energy through a surface surrounding the 
source. ~le same is true of periodic motion when we average over time. It is demonstrated 
below by actual calculation the equivalence of the two methods for the case of uniform ver- 
tical motion of a point source when the energy loss is finite (see (i.ii), (1.12)). 

~te energy flux density vector S =p(r, t)v(r, t), integrated over the time of flight 
of the source is 

dt S = 2-~1 ~ dt~ (r '  ~ v (r '  - ('))" (4.1) 

Appearing in this formula are the small perturbations in the pressure and velocity which can 
be expressed in terms of the mass source m(r, m) creating them and the "potential" ~m ~@(r, 
r~) according to the formulas [3] 

( m v ~ ,  - ,,,"A) ,l,,., = . . . .  ,,~ ( , ,  ,',), 
p ( r ,  o~) . . . .  / ( o ( N  z -- (,)~)11'o), v ( r ,  o)) := ((o" V --N:V#,)~I~. (4.2) 

Using these relations, the horizontal component of the energy flux vector (4.1) is 

S i ~d.o,,,(N~ 2", dtS~, - ~ -  -- <'. ) %,VIA'-,,,- (4.3) 

For a point source moving in the vertical direction we have 

nt (r ,  If) :-: ,,,.ol't (x)  6 (.I/) i~ (z  - -  1:ol ) , nt (r ,  el) .... m~ 6 (X) ~ (y)  e izc~ 
t' 0 

and t h e  s o l u t i o n  o f  ( 4 . 2 )  c a n  be  w r i t t e n  w i t h  t h e  h e l p  o f  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  
Green's function G ret (rh, kz, m) as follows: 

mo , izmlv.,rret [ (o ~ mo 
: = - - - e , , o  , ,u t,-,,, --,,o ' o ) /  - -  "o e " ~ / " ~  % 

Then since S is real we can transform (4.3) to the form 

~ dlS a = . . . .  

#n~ 
d ~ - .  ( N  ~ - -  ~,)~): (1 m GV h Re G - -  R e  GVh l m  G). 

2:l"i !,1~ d 

In a fluid where the Brunt--V~is~l~ 
satisfies t i l e  equation 

(4.4) 

frequency is constant, the function Gret(rh, kz, m) 
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{A"->%+i-'+ - -  (u) :-++)u ftV~ - -  ]<+7)} 6'+~ (r,+, i,'~, o ) ) =  6 (rh) ( 4 . 5 )  

and can be written in terms of cylindrical functions 

0 (r - -  :v ~) G"~ ,~, ,<, ]+.:. o+) = oCN~- <?-)7+~,,+._<+ .') {mo (f>)_~ +g,, o~jo(p))+ s Ko (n) ' 
(4.6) 

Substituting this expression into (4.4) and using the well-known relation for cylindrical 
functions 

jr , 0 <7 2 
o (P) ~ No (9) - -  No(P) -g~ do (P) = ~ ( 4 . 7 )  

w e  can  s i m p l i f y  ( 4 . 4 )  to  t h e  form 

N 

d t S h  - -  t6rt',,;rn~" ,, rhrl'+ -.+ do~ I r = \4+,,orbs rh. ( 4 . 8 )  

We note that in the simplified result only ImGret(rh, kz, m)Irh=o = -I/4(N = -- ~2)-~sgn 
~O(N 2 _ m2), is actually necessary rather than the entire expression (4.6). It follows from 
(4.5) that 

[(N ~ - -  ~ )  V~ + ~-k~l R~ G = 8 (r,+), [ (N ~ - -  m~') V~ + ~k~] Im G = 0. 

Multiplying the first equation by Ira G and the second by Re G and subtracting we find 

V h ( h n G V h R e G _ R e G V h l m G  ) : ImG H '  - ~o ~ 6 ( r h )  

and we will then have 

.... In r#, i m G V h R e G _ R e G V h I m  G ~ ImG(r~ = 0 ,  ]*'z' co) Vh ( 4 . 9 )  
N ~ -- oJ" 2n " 

Hence Im Girh=o goes in the integrand in (4.4). Finally, all the steps in the deriva- 
tion are equivalent to those done previously because using (4.6), relation (4.9) reduces to 
(4.7). 

If we now consider the projection of Sh onto the direction rh and integrate (4.8) over 
the surface of a cylindrical segment of unit height and radius rh, we obtain the total energy 
of radiation per unit path length 

noN" 
2nra dtSh = 8zl,~" 

and i f  we m u l t i p l y  t h i s  by  vo we o b t a i n  f o r m u l a  ( 1 . ! 1 )  f o r  t h e  e n e r g y  l o s s  p e r  u n i t  t i m e .  

Io 

2. 

. 

4. 

5. 

6. 

LITERATURE CITED 

I. V. Sturova, "Internal waves in an exponentially stratified fluid for an arbitrary 
motion of source," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3 (1980). 
E. W. Graham and B. B. Graham, "The tank wall effect on internal waves due to a tran- 
sient vertical force moving at fixed depth in a density-stratified fluid," J. Fluid 
Mech., 97, No. i (1980). 
V. A. Gorodtsov and E. V. Teodorovich, "Radiation of internal waves for uniform recti- 
linear motion of local and nonlocal sources," Izv. Akad. Nauk SSSR, 16, No. 9 (1980). 

V. A. Gorodtsov and E. V. Teodorovich, "Planar problem for internal waves produced by 
moving singular sources," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1981). 
Io M. Tern,v, V. V. Mikhailin, and V~ R. Khalilov, Synchrotron Radiation and its Appli- 
cation [in Russian], Moscow State Univ. (1980). 
D~ E. Mowbray and B. S. H. Rarity, "A theoretical and experimental investigation of the 
phase configuration of internal waves of small amplitude in a density-stratified 
liquid," J. Fluid. I~ch., 28, No. i (1967). 

525 



. V. A. Gorodtsov, "Radiation of internal waves for the vertical motion of a body through 
a nonuniform fluid," Inz.-fiz. Zh., 39, No. 4 (1980). 

PROBABILITY DISTRIBUTIONS OF THE VELOCITY 

FLUCTUATIONS IN AXISY~TRICAL TURBULENT WAKES 

V. I. Bukreev and V. A. Kostomakha UDC 532.517.4 

Experimental data are reported on the one-dimensional probability distribution functions 
and up to the sixth statistical moments of the turbulent velocity fluctuations in hydrodynam- 
ic wakes of bluff and streamlined bodies. The data complement similar existing information 
for various turbulent flows: after a grid [I, 2]; in a two-dimensional wake [3]; in circu- 
lar [4] and plane [5] jets; in a boundary layer [6]; in a circular pipe [17], etc. The prob- 
lems of self-similarity of the investigated flow, the influence of the conditions of its 
evolution on the fluctuation characteristics in the self-similarity zone, and the role of 
intermittency at the wake boundary are discussed on the basis of the experimental data. 

i. Experiments have been carried out in a low-turbulence wind tunnel with the applica- 
tion of a DISA Elektronik hot-wire anemometer system with a linearizer. Either a sphere of 
diameter D =i cm or a body of revolution (set up at zero angle of attack) with a midsection 
diameter D =I cm and an 8:1 elongation was suspended on wires of diameter 0.05 mm in the tun- 
nel working section, which had a length of 4 m and a cross section of 40 • cm and was fit- 
ted with triangular moldings in the corners to diminish secondary flows. In both cases the 
Reynolds number Re =U~D/~ =106 (where U~ is the freestream velocity and ~ is the kinematic 
viscosity coefficient). ~asurements have shown that this value of Re is large enough for 
the flow in the wake of the sphere to be self-similar with respect to the longitudinal coor- 
dinate and, hence, for similarity to hold with respect to the Reynolds number. To obtain 
similarity with respect to Re and self-similarity in the wake of the elongated body a turbu- 
lence generator in the form of a ring of diameter 8 mm and thickness 0~ mm was set up in 
the bow region of the body. As a result, the drag forces F x on the profiled body and the 
sphere did not differ appreciably, and so the drag coefficients Cx defined by the relation 

f x = c ~ p S U % / 2 ,  S = ~D2 / 4 ,  

were equal to 0.39 and 0.48 respectively. The small difference in the drag forces fit in 
quite ~ell with one of the objectives of the experiments, which was to show that the charac- 
teristics of a wake in the self-similar region are not determined solely by the drag and free- 
stream velocity, but depend strongly on the configuration of the body. 

Below, we use a cylindrical coordinate system x, r, e, which is attached to the body 
with its origin located at the trailing edge of the body and its x axis directed downstream. 
In addition to the constants U= and D, we also use the following functions of x as typical 
scales of the velocity and length: 

= 1 
which are based on considerations of self-similarity of the flow. Here Xo is the virtual 
origin of the wake and in the given experiments is close to zero for both bodies [8]. 

~e probability density function p(e) of the stationary (in the statistical sense) hot- 
wire signal e(t) was estimated by means of an Intertechnique Histomat-S random-process analyz- 
er. The signal e(t) was related to the longitudinal component of the velocity u(t) in the 
wake by the linear equation e =a +ku, where a and k are constants determined in static cali- 
bration of the hot-wire anemometer. The following statistical characteristics were deter- 
mined in subsequent processing on a general-purpose computer: the probability density func- 
tion of the velocity fluctuations 
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